logo

Туннельный контакт помог изучить электронную структуру углеродных нанотрубок

Российские физики показали, что можно использовать туннельный контакт для спектроскопии электронных состояний углеродных нанотрубок. Предложенная технология изготовления туннельного контакта и метод спектроскопии помогут точно определять ширину запрещенной зоны нанотрубок, которая является ключевой характеристикой для разработки любых электронных устройств на их основе.

Углеродные нанотрубки — это уникальные по своей физической природе и свойствам объекты. Они активно исследуются в последние три десятилетия и могут применяться в различных областях науки и техники: в материаловедении, физике, электронике и многих других.

Углеродную нанотрубку можно рассматривать как свернутый в трубку лист графена. Уникальность свойств углеродных нанотрубок связана с тем, что от того, каким конкретно образом этот лист был свернут в трубку, зависит ширина запрещенной зоны, которая определяет полупроводниковые либо металлические свойства нанотрубки. Можно провести следующую аналогию: представьте себе обычный лист бумаги — его можно легко свернуть в трубку, соединяя либо две противоположные стороны, либо два противоположных угла, или же можно соединить угол с любой точкой на противоположной стороне. Свойства листа бумаги никак не зависят от того, каким конкретно образом его свернули в трубку. Если теперь мы заменим лист бумаги на маленький кусочек графена, то окажется, что в зависимости от того, каким именно способом мы свернули графен в трубку, он будет вести себя либо как полупроводник, либо как металл с точки зрения проводимости. Такое поведение делает углеродные нанотрубки очень привлекательным материалом для создания всевозможных электронных устройств.

Ширина запрещенной зоны — это основная характеристика полупроводников, которая в первую очередь обусловливает возможности их применения. На данном этапе развития технологий пока не придуман хороший способ выращивать углеродные нанотрубки с заранее известной шириной запрещенной зоны. В процессе синтеза могут вырастать углеродные нанотрубки с различной шириной запрещенной зоны и даже вообще без нее. Чтобы определять ширину запрещенной зоны и конкретный вид распределения электронов по энергии, для каждой отдельной трубки традиционно использовалась туннельная спектроскопия при помощи туннельного микроскопа. Этот метод имеет ряд недостатков: он неточный, дорогой и нетехнологичный.

В опубликованной работе ученые предложили технологичный (то есть хорошо совместимый с современными технологиями изготовления электронных устройств) и масштабируемый метод для определения спектра электронов одиночной углеродной нанотрубки. Для этого исследователи изготовили туннельный контакт. Туннельный контакт — это контакт с очень высоким электрическим сопротивлением. Металл контакта связан с трубкой не напрямую, а через тонкий слой диэлектрика.

«Диэлектрик создает туннельный барьер — энергетическую стену, которая препятствует переносу носителей заряда. «Классическая» частица не может преодолеть такой барьер, но квантовая механика «позволяет» электрону проводимости или дырке пройти сквозь такой барьер, то есть протуннелировать, — комментирует один из авторов исследования Яков Матюшкин, младший научный сотрудник лаборатории наноуглерод-ных материалов МФТИ, стажер-исследователь и аспирант МИЭМ ВШЭ. — Важно, что вероятность туннелирования пропорциональна плотности состояний в исследуемом объекте. Благодаря этому свойству туннельный контакт позволяет сканировать распределение электронов по энергии в трубке».

Исследователи сделали серию образцов, каждый из которых представлял собой одиночную углеродную нанотрубку с двумя парами омических и двумя парами туннельных контактов. Ученые сначала вырастили на кремниевой подложке трубку, а затем присоединили к ней туннельные и омические контакты. В ходе эксперимента при температуре жидкого гелия между туннельным и омическим контактом прикладывали напряжение и измеряли электрический ток, который протекал через систему. Зависимость тока от напряжения позволила получить спектр электронов в углеродной нанотрубке и узнать ширину запрещенной зоны.

«Предложенный в работе метод позволяет не только получить информацию о зонной структуре углеродной нанотрубки, но и выяснить, как она меняется под влиянием внешних воздействий, — говорит соавтор исследования Георгий Федоров, заместитель заведующего лабораторией наноуглеродных материалов МФТИ. — В частности, в данной работе мы при помощи туннельного контакта напрямую наблюдали снятие долинного вырождения в магнитном поле. Этот давно предсказанный эффект, проявляющийся в энергетическом расщеплении максимумов плотности состояний, мы впервые продемонстрировали в случае индивидуальной нанотрубки».

Образцы были изготовлены сотрудниками лаборатории наноуглеродных материалов МФТИ на базе ЦКП МФТИ. Экспериментальная часть выполнена в проблемной радиофизической лаборатории Московского педагогического государственного университета и в ЦКП ФИАН «Исследования сильно коррелированных систем». Работа выполнена при поддержке РФФИ, РНФ и Министерства науки и высшего образования РФ. Результаты работы были представлены в журнале Applied Physics Letters.